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Abstract. There exist many data clustering algorithms, but they can not adequately handle
the number of clusters or cluster shapes. Their performance mainly depends on a choice of
algorithm parameters. Our approach to data clustering and algorithm does not require the
parameter choice; it can be treated as a natural adaptation to the existing structure of dis-
tances between data points. The outlier factor introduced by the author specifies a degree
of being an outlier for each data point. The outlier factor notion is based on the differ-
ence between the frequency distribution of interpoint distances in a given dataset and the
corresponding distribution of uniformly distributed points. Then data clusters can be deter-
mined by maximizing the outlier factor function. The data points in dataset are divided
into clusters according to the attractor regions of local optima. An experimental evalua-
tion of the proposed algorithm shows that the proposed method can identify complex clus-
ter shapes. Key advantages of the approach are: good clustering properties for datasets with
comparatively large amount of noise (an additional data points), and an absence of impor-
tant parameters which adequate choice determines the quality of results.
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1. Introduction

Cluster analysis (Jain and Dubes, 1988) divides data into groups of similar
objects. Each group consists of objects that are in a sense similar between
themselves and dissimilar to objects of other groups. Clustering requires the
definition of a similarity measure between patterns, which is not easy to
specify in the absence of knowledge about cluster shapes.

A large number of clustering algorithms exist (Jain et al., 1999); each
algorithm has its own approach for handling number of clusters, their
shape, and structure of the data. Clustering techniques are divided in hier-
archical and partitioning. Hierarchical algorithms build clusters gradually,
and partitioning algorithms detect clusters directly trying to identify clus-
ters as areas highly populated with data. Partitioning algorithms are less
sensitive to outliers and can discover clusters of irregular shapes.

The K-means algorithm is one of the simplest clustering algorithms. Its
limitation is inability to identify clusters with arbitrary shapes. K-means
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methods are not very stable and very sensitive to outliers. They often do
not work well when the clusters are of different size, shape, and density
(Ertoz et al., 2002).

One of the problems with the clustering methods is that the most cluster-
ing algorithms prefer certain cluster shapes, and the algorithms will assign
the data to clusters of such shapes even if there were no clusters in the data.

Another problem is that the choice of the number of clusters may
be critical: different clusters may emerge when the number of clusters is
changed. Good initialization of the cluster centroids in a K-means cluster-
ing method (MacQueen, 1967) may also be crucial; some clusters may even
be left empty.

Hinneburg and Keim (1998) used density functions defined over the
attribute space. They proposed the algorithm DENsity-based CLUstEring
(DENCLUE) which is based on the idea that the influence of each data
point can be modeled using some influence function. The overall density
function of the data space can be calculated as the sum of the influence
functions of all data points. This function is multimodal; each maximum
corresponds to the cluster center. Clusters can be determined by identify-
ing density attractors after local optimization of overall density function
for each data point.

The influence function in Hinneburg and Keim (1998) can be an arbi-
trary function, for example:

• Square Wave Function

fSquare(x, y)=
{

0, if d(x, y)>σ,

1, otherwise.

• Gaussian Influence Function

fGauss(x, y)= exp
(

−d(x, y)2

2σ 2

)
,

where d(x, y) is the distance between two vectors.

The results of the algorithm mainly depend on a choice of the influence
function and its parameters (for example, parameter σ ). But the idea of
data clustering by local optimization of some function defined over the attri-
bute space is successfully used in this paper. The outlier factor introduced in
Saltenis (2004) does not require the parameter choice and was used as some
overall density function. The outlier factor can be seen as natural adaptation
to the existing structure of distances between data points.

The rest of the paper is organized as follows. In section 2 outlier fac-
tor and outlier factor function are introduced. In section 3 the problems
of optimization of outlier factor function are discussed. In section 4 the
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proposed optimization procedure is presented. In section 5 we provide an
experimental evaluation of our approach. Section 6 summarizes the results.

2. Outlier Factor and Outlier Detection

Outliers and clusters in a dataset are related. An outlier means not being in
or close to a cluster. The outlier factor (Saltenis, 2004) used in this paper
achieves minimal values for outlier points and maximal values in cluster
centers. A useful idea to evaluate the outlier factor is to analyze the dis-
tribution of distances between the points.

The authors (Brin, 1995; Steinbach et al., 2003) paid an attention, that
one way of analyzing whether a data may contain clusters is to plot the
approximate probability density function of the pairwise distances between
all points in a dataset. If the data contains clusters then the histogram will
show two peaks: a peak representing the distance between points in clus-
ters and a peak representing the average distance between the points (see
Figure 1). If only one peak is present then clustering will likely be difficult.

One way to use these distributions with the aim to extract some
properties of point outlierness is to compare them with the corresponding
distributions of uniformly distributed points (see Figure 2).

The tables of the corresponding distribution values evaluated experimen-
tally are presented in Saltenis (2004).

We can see in all cases the dominating narrow peak, which is usual for
uniform distribution of data points in multidimensional cube. This peak is
different for different space dimensionality.

The main idea is to eliminate the influence of dominating narrow
peak and analyze the difference between the distribution of the pairwise
distances d between all points in a given dataset f n(d) and the corre-
sponding distribution of uniformly distributed points f u(d) for the same
dimensionality. The analyzed domain is the same multidimensional cube in
both cases.

Figure 1. Plot of interpoint distances for data with clusters.
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Figure 2. The frequency distributions of uniformly distributed points for dimensionalities
n=1, . . .,7 in a hypercube of side length 1.

The difference function

f (d)=f n(d)−f u(d)

may be treated as a frequency function, similar to the influence function
introduced in Hinneburg and Keim (1998).

If points are uniformly distributed we obtain frequency function that is
near to zero to all interpoint distances.

If the points are not uniformly distributed the greatest positive values of
frequency function will indicate the most frequent, the most typical inter-
point distances.

Figure 3 gives an illustration of frequency function for the data points in
two-cluster situation (dimensionality 2) in Figure 4. The first peak of pos-
itive values of the frequency function is due to distances inside the point
clusters, and the frequent distances between the clusters cause the second
peak of positive values.

For each data point i =1, . . .,m an outlier factor may be calculated:

Ri =
m∑

j=1
j �=i

f (d(Xi,Xj )),

where X = (x1, . . . , xn), and d(Xi,Xj ) is the distance between two vectors.
The outlying points will have low values of outlier factor R because the

distances between the point and the rest points will be a typical.
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Figure 3. Frequency function for the data point allocation of Figure 4.
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Figure 4. Data point allocation situation for two clusters.

The factor was used to rank the dataset objects regarding their degree
of being an outlier (Saltenis, 2004). To investigate the quality of the outlier
detection, the experiments were performed on widely used HBK (Hawkins
et al., 1984) and Wood (Draper and Smith, 1966) datasets. A comparison
with some popular detection methods demonstrated the superiority of the
approach.

In the same way as outlier factor we also may introduce an outlier factor
function R(X) for each space point X:

R(X)=
m∑

j=1

f (d(X,Xj)).
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The illustrations of outlier factor function values together with the corre-
sponding data points for two-dimensional data are presented in Figures 5
(two clusters) and 6 (three clusters).

3. Optimization of Outlier Factor Function

It is obvious that if local optimization procedure of the outlier factor func-
tion R(X) converges to the same local maxima when start points of the
optimization are data points Xi and Xj then these data points belong to
the same cluster. Then points of local maxima are the centers of clusters,
and the point of global maximum is the center of dominant cluster.

Data clustering experiments using second order optimization method
demonstrated some drawbacks of this approach. Optimization results may
slightly differ for the points of the same cluster because the outlier factor
function may have relatively small local optima near the data points, and
the function is not always continuous or differentiable. Figure 7 presents an
illustration of two local maxima of outlier factor function in case of one
data cluster.

For this reason more stable heuristic optimization procedure was pro-
posed.

4. Heuristic Optimization Procedure

The procedure uses only outlier factor values Ri of data points Xi ,
i =1, . . .,m.

Figure 5. The outlier factor function together with the corresponding two-dimensional data
points (two-cluster case).
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Figure 6. The outlier factor function together with the corresponding two-dimensional data
points (three-cluster case).

Figure 7. Illustration of two local maxima of outlier factor function.

1. Each data point is used as a start point for local optimization proce-
dure. If optimization procedure converges to the same local maxima
for different start points Xi and Xj then these start points belong to
the same cluster.

2. In each step of optimization procedure current data point is changed
to the nearest data point which outlier factor value is greater.
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3. If outlier factor values for all points in some distance ε from the cur-
rent point are not greater then this point is the local optimum point,
cluster center.

4. The distance ε used for the limitation of search for better point is the
only parameter of procedure.

The values of parameter ε may slightly influence the results of clustering.
In our experiments the parameter value used was equal to 0,1 for hyper-
cube domain of side length 1.

In the next section, we present the illustration of the optimization pro-
cedure steps for Iris data.

5. Experimental Results

We illustrate the experimental results of the proposed clustering method
with several test datasets.

The half-rings dataset, as shown in Figure 8 consists of two clusters (20
points in each cluster).

Clustering was performed properly; two clusters were selected. Black
marks in Figure 8 were used for cluster centers, and x marks were used for
the outliers in each cluster. The K-means algorithm was unable to identify
the two natural clusters, imposing a spherical structure on the data.

Iris data (Fisher, 1936) has well-known structure: the first cluster (50
data points) is well separated, and there are two contiguous clusters (50
points in each). Four attributes define these data.
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Figure 8. The half-rings dataset consisting of two clusters.
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The data of first cluster were separated properly. The points of second
and third clusters were also separated properly with some exceptions. One
data point from the third cluster was attached to the second cluster, and
13 data points from second cluster were attached to the third cluster.

Figure 9 presents an illustrative scheme of heuristic optimization proce-
dure steps for data points of second cluster.

We can see the numbers of data points and the sequence of the points
in optimization steps. The end of all optimization procedures with various
start points is data point no 74. This point is the center of the second clus-
ter of Iris data set.

Noise invariance was investigated in such a way:

• Two gaussian data clusters without noise were used.
• The distance between them was selected so that the proposed tech-

nique could identify the clusters.
• Additional uniformly distributed data points (the noise) step by step

were introduced and each time cluster analysis was performed.

Results of the investigation are presented in Table 1.

Figure 9. Illustrative scheme of heuristic optimization procedure steps for second cluster of Iris
data points.
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Table I. Results of noise invariance investigation

Percent of additional noisy data points Quality of the clustering

0–55% No errors, two clusters
55–62% 55% of errors, two clusters
>62 One cluster

6. Conclusions

The outlier factor and outlier factor function may be successfully used in
data clustering.

The advantages of new approach and optimization procedure are:
• good clustering properties for data sets with large amount of noise;
• the absence of important parameters which choice determines the

quality of results;
• evaluation of the frequency function can be seen as natural adaptation

to the dataset.

Acknowledgments

The research was partially supported by the Lithuanian State Science and
Studies Foundation, Grant No. C 03013.

References

1. Brin, S. (1995), Near Neighbor Search in Large Metric Spaces. In: Proceedings of
the 21st International Conference on Very Large Databases (VLDB-1995), Zurich,
Switzerland, Morgan Kaufmann, pp. 574–584.

2. Draper, N.R. and Smith, H. (1966), Applied Regression Analysis, Wiley, New York.
3. Ertoz, L., Steinbach, M. and Kumar, V. (2002), A new shared nearest neighbor cluster-

ing algorithm and its applications, AHPCRC, Technical Report 134.
4. Fisher R.A. (1936), The use of multiple measurements in taxonomy problems, Annals

of Eugenics 7, 179–188.
5. Hawkins, D.M., Bradu, D. and Kass, G.V. (1984), Location of several outliers in mul-

tiple regression data using elemental sets, Technometrics 26, 197–208.
6. Hinneburg, A. and Keim, D. (1998), An efficient approach to clustering large multime-

dia databases with noise. In: Proceedings of the 4th ACM SIGKDD, New York, NY, pp.
58–65.

7. Jain, A.K. and Dubes, R.C. (1988), Algorithms for Clustering Data, Prentice Hall, Engle-
wood Cliffs, NJ.

8. Jain, A., Murty, M.N. and Flynn, P. (1999), Data clustering: a review. ACM Computing
Surveys 31(3), 264–323.

9. MacQueen, J. (1967), Some methods for classification and analysis of multivariate obser-
vations. In: Le Cam, L.M. and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume I: Statistics, University of
California Press, Berkeley and Los Angeles, CA, pp. 281–297.



DATA CLUSTERING BASED ON MAXIMIZATION 635

10. Saltenis, V. (2004), Outlier detection based on the distribution of distances between data
points, Informatica, 15(3), 399–410.

11. Steinbach, M., Ertoz, L. and Kumar, V. (2003), Challenges of Clustering High Dimen-
sional Data. New Vistas in Statistical Physics. Applications in Econophysics, Bioinformat-
ics, and Pattern Recognition, Springer-Verlag, Berlin.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


